
Swiss Winter School on Theoretical Computer Science 2023

Fast Graph Algorithms Using Optimization and Data Structures

R. Kyng Problem Set 2, v.0 — Tuesday, Jan 31st

Exercise 1: Expander Basics

Consider an unweighted connected graph G = (V,E). We define the conductance of a cut S ⊆ V in G to be

ϕG(S) =
|E(S, V \ S)|

min{vol(S), vol(V \ S)}
.

We define the expansion ϕG of G to be the minimum expansion of any non-empty cut. We say that G is a
ϕ-expander if ϕG ≥ ϕ. Notice that 0 < ϕG ≤ 1.

1. What is the expansion of the complete graph?

2. What is the expansion of the path graph?

Exercise 2: Bounding the Diameter of an Expander

Let G be a connected, unweighted graph that is a ϕ-expander. Prove that the diameter of G is O(logm/ϕ).

Hint: Fix any pair of vertices s, t in G. Then think about running BFS explorations simultaneously from s
and t.

Exercise 3: Sparsifying an Expander

Let G = (V,E) be a connected, unweighted graph that is a ϕ-expander with m edges and minimum degree
d. Form a new graph H = (V,E′) by independently adding each edge of E to E′ with probability p.

Show that for some p = Õ(1/d), we have that with high probability H is an Ω(ϕ)-expander and has at most

Õ(m/d) edges.

Exercise 4: Routing Recap

The d dimensional hypercube graph G = (V,E) has V = {0, 1}d and has an edge between vertices whose bit
strings differ in exactly one coordinate. The graph has n = 2d vertices and m = d2d/2 edges.

1. The hypercube is a 1/d-expander. Show that this is tight.

2. Let H be a D-regular graph with 2d vertices. Construct an embedding of H into G with path lengths
bounded by mo(1) and congestion bounded by mo(1)D. Note that d = Õ(1).

Exercise 5: Dynamic Spanner

In the lectures, we described a decremental spanner for an unweighted graph, as given by the following
theorem.

1

Theorem. Given a decremental unweighted graph G with n vertices and m ≥ n edges and maximum degree
D, where G undergoes t ≤ n edge deletions and vertex splits, we can maintain a (unweighted, subgraph)
spanner H of G with stretch mo(1) for all edges of G, s.t. H undergoes a total of tmo(1) updates (i.e. number
of edge insertions and deletions and vertex splits), and the overall running time of the algorithm is Dm1+o(1).

This theorem falls short of providing a fully dynamic spanner – and it’s a little underspecified in terms of
how we deal with updates. Let us fix that.

1. We’ve been fuzzy on the encoding of vertex splits. Suppose that given a vertex v to split into v′ and
v′′, we encode this information via access to the adjacency list Av of v and a list Av′ of the edges that
move to v′, where deg(v′) ≤ deg(v′′). Assume the Av′ list includes pointers to the linked list entries in
Av.

(a) Show that the total encoding size of all updates we receive during the algorithm is Õ(m).

(b) Describe how we can achieve the claimed running time by updating the linked lists in place. You
can assume additional information is stored in your data structures, provided you describe how
to maintain it efficiently.

2. Using the encoding scheme we just introduced, explain how the encoding size of all updates to H can
be bounded by nmo(1).

3. Describe a spanner for an unweighted dynamic graph that in addition to edge deletions and vertex
splits also allows edge insertions, while having similar parameters to the theorem above. It’s OK to
lose some more log factors. Can you make it work even if insertions increase the maximum degree
arbitrarily?

4. Extend the spanner to graphs with edge lengths, assuming every edge length is always in the range
[1,m10]. Again, it’s OK to lose some more log factors.

Exercise 6: Spanner Cycle Dichotomy

Consider a graph G = (V,E) with edge lengths l ∈ RE
+ and gradients g ∈ RE .

Consider the following optimization program:

min
δ∈RẼ

g⊤δ (1)

s.t. Bδ = 0

∥Lf δ∥1 ≤ 1

Suppose the optimal value of Program (1) is −α < 0 in G.

Let H = (V, F), with F ⊆ H be a spanner of G with an associated collection of spanner cycles

C = {(e, path for e in H)) : e ∈ E \ F} .

Suppose for every e ∈ E \ F the associated spanner cycle has l(path for e in H) ≤ γl(e), some some γ ≥ 1.

Prove that if every spanner cycle satifies

g(e) +
∑

h∈path for e in H g(h)

l(e) +
∑

h∈path for e in H l(h)
≥ − α

2(1 + γ)

then the value of Program (1) restricted to the edges of H has value ≤ − α
2γ .

2

Bonus Exercise: Expander Decomposition

by Maximilian Probst Gutenberg.

Let G = (V,E) be a connected, undirected graph. In this problem, you will show that there is an algorithm
that computes a ϕ-expander decomposition X1, X2, . . . , Xk for G of with Õ(ϕm) edges crossing between the
partitions in time O(m logc n) for some constant c.

Assume that you are given an algorithm CertifyOrCut(G,ϕ) that given a graph G and a parameter ϕ
either:

• Certifies that G is a ϕ-expander, or

• Presents a cut S such that ϕ(S) = Õ(ϕ).

The algorithm CertifyOrCut(G,ϕ) runs in time O(m logc
′
n) for c′ > 0.

1. Show that there is an algorithm that uses CertifyOrCut(G,ϕ) and computes a ϕ-expander decom-

position with Õ(ϕm) edges crossing in time O(mn · logc
′
n).

2. Show that in O(mn · logc
′
n) time, you can implement a procedure CertifyOrLargeCut(G,ϕ) that

outputs a set S (possibly empty) with ϕ(S) = Õ(ϕ) such that either

• G[V \ S] is a ϕ-expander and volG(V \ S) ≥ 1
3m, or

• min{volG(S), volG(V \ S)} ≥ 1
3m.

Hint: Prove that given a set S ⊆ V of conductance ϕG(S) ≤ ϕ and a set S′ ⊆ V \ S in G[V \ S] with
conductance ϕG[V \S](S

′) ≤ ϕ, you have that ϕG(S ∪ S′) ≤ ϕ.

3. Assume that there is an algorithm that implements CertifyOrLargeCut(G,ϕ) to run in time in

O(m logc
′′
n) time1. Show that this implies an O(m logc

′′+1 n) time algorithm to compute a ϕ-expander
decomposition.

1This implementation can be derived rather straight-forwardly from the algorithm in ”Graph partitioning using single
commodity flows.” by Khandekar, Rohit, Satish Rao, and Umesh Vazirani which appeared in the Journal of the ACM (JACM)
56.4 (2009).

3

