
Swiss Winter School on Theoretical Computer Science 2023

Fast Graph Algorithms Using Optimization and Data Structures

R. Kyng Problem Set 1, v.0 — Monday, Jan 30th

Problem: An ℓ1-Interior Point Method for Maximum Flow

Consider an undirected graph G = (V,E) with capacities c ∈ RE
+, as usual with n vertices and m edges.

We will assume m > 10 and that the entries of c are positive integers and ∥c∥1 ≤ m10. Let s, t ∈ V be a
source and sink vertex respectively. Assume we are also given the maximum flow value 0 < F ≤ m10 (F is
an integer) that can be routed between s and t.

Now we add a new special edge from ẽ between s and t with no capacity limit. We then define the extended
edge set Ẽ = E ∪{ẽ}. We pick the orientation of ẽ such that 1⊤

ẽ f = f (ẽ) measures the amount of flow going
from s to t on edge ẽ. Let B be the edge-vertex incidence matrix of Ẽ. Ultimately, we want to find a flow
f ∈ RE that routes F units of flow from s to t without using the edge ẽ. We will do this by setting up a

linear program that asks us to find a flow f ∈ RẼ that routes F units of flow from s to t without using the
edge ẽ.

We can now write this as a linear program that asks us to minimize the flow on ẽ, subject to the constraints
Bf = F (−1s + 1t) and for all e ∈ E that −c(e) ≤ f (e) ≤ c(e).

min
f∈RẼ

f (ẽ) (1)

s.t. Bf = F (−1s + 1t)

and for all e ∈ E

−c(e) ≤ f (e) ≤ c(e)

Now we are going to consider a barrier program which is an variant of the above program but using barrier
functions that make it suitable for optimizing with an interior point method. We will consider an inequality
constraint set that also constrains f (ẽ). We denote this capacity constrained flow set by

I =
{
f ∈ RẼ : f (ẽ) > 0 and for all e ∈ E.− c(e) < f (e) < c(e)

}
Then, we define a barrier B : I → R by

B(f) =
∑
e∈E

− log

(
1− f (e)

c(e)

)
− log

(
1 +

f (e)

c(e)

)
We further define our overall potential Φ(f) = 10m log(f (ẽ)) + B(f). We can now introduce our barrier
program:

min
f∈I

Φ(f) (2)

s.t. Bf = F (−1s + 1t)

1

Part A: The Potential Function: Initialization and End-Goal. We would now like to begin under-
standing the Programs (1) and (2) better. First, we will try understand why solutions to Program (1) give
us a maximum flow, and second we will investigate how a feasible solution f for Program (2) with a small
potential value Φ(f) give us an appproximate maximum flow. Finally, we will see that there is an easy way
to get a reasonable feasible starting point f 0 for Program (2). Later we will see how to improve this solution
to get a maximum flow.

1. Is Program (1) a convex optimization program? Is Program (2) a convex program?

2. Prove that any optimal solution f ∗ for the Program (1) routes F units of flow from s to t on the edges
of E and has f (ẽ) = 0.

3. Prove that if Bf = F (−1s + 1t), and f ∈ I, and Φ(f) ≤ −10m logm then f (ẽ) ≤ 1/m.

4. Prove that for f 0 = F1ẽ we have Bf 0 = F (−1s + 1t), and f 0 ∈ I, and Φ(f 0) ≤ 100m logm.

Part B: IPM Progress Using Updates. In Part A of this homework problem, we saw how to find a
starting point for minimizing Φ(f) in Program (2). Now, we would like to understand how to improve the
solution. To do this, we will think about Taylor series approximations of Φ.

1. Given f ∈ I, define l ∈ RẼ by l(ẽ) = 1/f (ẽ) and

l f (e) =
1

min(c(e)− f (e), c(e) + f (e))
(3)

for all e ∈ E. We define a corresponding diagonal matrix Lf ∈ RẼ×Ẽ by Lf (e, e) = l f (e) for all e ∈ Ẽ.

Prove that if ∥Lf δ∥∞ ≤ 1/2 then f + δ ∈ I and

Φ(f + δ) ≤ Φ(f) +∇fΦ(f)
⊤δ + 4 ∥Lf δ∥21 .

2. Prove that if for some κ > 1 we have ∥Lf δ∥1 ≤ κ and ∇fΦ(f)
⊤δ = −1 then

Φ(f +
1

8κ2
δ) ≤ Φ(f)− 1

16κ2
.

Part C: The Update. In Part B, we saw a set of sufficient conditions for an update δ to improve the
potential function value. Of course, if we use this to optimization Φ(f) by moving from f to f + δ, then
if we require that Bf = F (−1s + 1t) and B(f + δ) = F (−1s + 1t), then we must have Bδ = 0, i.e. the
update should be a circulation. In this part, we will show that in fact a good circulation δ exists for lowering
the value of Φ, and we can phrase the task of finding δ as an optimization problem. Finally, we will put
everything together and argue that if we can find the update circulations, we can compute a maximum flow
in a reasonable amount of time.

1. Consider the following optimization program:

min
δ∈RẼ

∥Lf δ∥1 (4)

s.t. Bδ = 0

∇fΦ(f)
⊤δ = −1

Is this a convex optimization program?

2. Prove that the value γ∗ of Program (4) is bounded by γ∗ ≤ O(1).

Hint: Consider vectors of the form δ̄ = α(f ∗ − f) for some scalar α, where f ∗ is an optimal solution
to Program (1).

2

3. Prove that there exists an optimal solution δ∗ for Program (4) which is supported on a single simple
cycle.

4. Suppose you have access to the following subroutines:

• An algorithm that computes a probabilistic low stretch spanning tree of any graph G with m
edges in time Õ(m). Recall that a probabilistic low stretch tree is a random sub-tree T s.t. for

every edge of G, the expected stretch of the edge w.r.t. T is Õ(1).

• An algorithm RoundFlow(f) that given a flow f ∈ I with Bf = F (−1s+1t) returns an integral
flow1 f̂ with −c(e) ≤ f̂ (e) ≤ c(e), f̂ (ẽ) = 0 and Bf̂ = F̂ (−1s + 1t) where F̂ ≥ F − f (ẽ) − 10.
The routine takes time TRoundFlow = Õ(m).

Describe a randomized algorithm for solving our undirected maximum flow problem w.h.p. in time
Õ(m2) using the IPM, low-stretch spanning trees, the RoundFlow algorithms, and Ford-Fulkerson
with basic path augmentation (i.e. no blocking flows). You should not need to use other algorithms
such as Dinic’s max flow algorithm or data structures like Link-Cut trees.

Part D: Stability. In the previous problem, we started analyzing the update Program (4), and we will
start to see why this might be possible, by showing that an update δ with small norm ∥Lf δ∥1 can only cause
the lengths l f+δ to change significantly in very few entries.

1. Consider an update δ such that ∥Lf δ∥1 ≤ 1/2, and define s = L−1
f l f+δ. Let

U =
{
e : |s(e)− 1| > 1/mo(1)

}
. Prove that |U| ≤ mo(1).

2. Bonus: Analyze stability of the lengths during a sequence of updates. Hint: a bucketing scheme may
help.

3. Bonus: Analyze stability of the gradient. What is the right notion of approximation?

Bonus Exercise: Tree data structures

We want to consider a simplified model of our data structures to understand the basics of how we can use a
link-cut tree-based data structure to maintain our flow during the IPM iterations.

Assume a min-ratio cycle data structure to support the following operations:

• Initialize(G, ĝ (0), L̂
(0)

) : initially, the data structure is given the underlying graph G and the initial
approximate gradients and lengths on the edges of G. This also initializes an associated dynamic
spanning tree T , whose edges will always be a subset of the edges of G.

• Update(ĝ (t), L̂
(t)
) : the t-th update replaces the current gradient and lengths by ĝ (t) and L̂

(t)
(assume

a sparse representation can be used, and only specify entries that should be updated). This also returns
a list of edges Eadd that need to be added to T and edges Edelete that need to be removed from T . It
is guaranteed that T will remain a spanning tree after the update. The amortized number of edges of
T that change per update is mo(1).

• Query() : returns an off-tree edge e (w.r.t. the current tree T) and a scaling α ∈ R such that
the cycle given by sending α units of flow forward along e and backwards around its tree path in T

(approximately) minimizes (4) with respect to ĝ (t) and L̂
(t)
.

• Assume that if ĝ (t) ≈ g (t) and L̂
(t)

≈ L(t) (for the lengths, this means coordinate-wise 1 ± 1/mo(1)

factor approximation), then the tree cycle for edge e associated with T has value mo(1) in Program (4)
and still satisfies the gradient condition (this is slightly unrealistic, but very close the truth).

1An integral flow is a flow with integer entries.

3

For this exercise, you should ignore gradient maintenance: Just assume the gradient vector is maintained
correctly and for free by the data structure.

Assume we have another data structure MaintainTree which can support the following operations:

• Initialize(V, T) : Given a spanning tree T with edges F on vertex set V , initialize the data structure.
The edges should have an orientation (but this is not part of the relevant to the property of being a
spanning tree). Maintain a vector t ∈ RF of real numbers, one for each edge in T . Initially all entries

of t are set to zero. Time is Õ(m).

• Update(Eadd, Edelete) : Remove edges Edelete from T and add edges Eadd to T . The edges must
maintain that T is a spanning tree of V . This changes vector t : new entries are set to zero. Time per
edge is Õ(1).

• QueryMax(u, v) : Given vertices u, v ∈ V , returns the maximum entry in t (index and value) on the

path between u and v. Time per query is Õ(1).

• AddUnsigned(u, v, δ) : Given vertices u, v ∈ V , add δ ∈ R to every entry of t corresponding to edges

on the u-v path in T . Time for the operation is Õ(1).

• AddSigned(u, v, δ) : Given vertices u, v ∈ V , add ±δ to every entry of t corresponding to edges on the
u-v path in T : Add +δ to the edge if the tree path traverses the edge in the direction of its orientation.
Add −δ to the edge if the tree path traverses the edge in the opposite direction of its orientation. Time
for the operation is Õ(1).

• You may also assume operations for QuerySumSigned(u, v) and QuerySumUnsigned(u, v) : (self-

explanatory), but I don’t think you should need them. Time for the operation is Õ(1).

The goals of the exercise:

• Describe how to maintain the solution flow vector f (t) during the IPM under updates given by tree
cycle flows. Overall time should be m1+o(1).

• Describe how to maintain the lengths L̂
(t)

≈ L(t) with a coordinate-wise 1 ± 1/mo(1) factor approxi-
mation. Overall time should be m1+o(1).

4

