
A Tutorial on Matrix Approximation by Row Sampling

Rasmus Kyng

June 11, 2018

Contents

1 Fast Linear Algebra Talk 2
1.1 Matrix Concentration . 2
1.2 Algorithms for ε-Approximation of a matrix . 2

1.2.1 Uniform Sampling for Leverage Score Estimation 3
1.3 JL Speed-up . 4
1.4 BSS-sparsification . 5

1

1 Fast Linear Algebra Talk

1.1 Matrix Concentration

Consider A> ∈ Rm×n. For simplicity, assume m ≥ n and rankA> = n, and write

A> =

aaa>1
...

aaa>m

 .

Definition 1.1 (Spectral ε-approximation). We will say that B> ∈ Rm×n is an ε-approximation of
A> iff for all x in Rn

(1− ε)
∥∥∥A>x∥∥∥2

2
≤
∥∥∥B>x∥∥∥2

2
≤ (1 + ε)

∥∥∥A>x∥∥∥2
2
.

Definition 1.2 (Leverage Score). The leverage score of the ith row of A> is

τi(A
>) = max

x∈Rn
(aaa>i x)

2

‖A>x‖22
.

Theorem 1.3 (Leverage Score Sum).
∑

i∈[m] τi(A
>) = rank(A>).

Below is a useful version of a Matrix Chernoff concentration result, this one due to Tropp [Tro12].
Important earlier versions were developed by Rudelson [Rud99] and Ahlswede and Winter [AW02].

Theorem 1.4 (Matrix Chernoff). Form S ⊂ [m] by including each i independently with probability
pi ≥ min(2ε−2τi(A) log(n/δ), 1). Define the diagonal matrix D ∈ Rm×m

D(i, i) =

{
1√
pi

if i ∈ S
0 o.w.

Then with probability at least 1 − δ, DA> is an ε-approximation of A>. Note that the expected
number of rows in DA> is at most 2ε−2n log(n/δ).

1.2 Algorithms for ε-Approximation of a matrix

Suppose we are given a matrix A> with m � n and we’d like to find Ã> ∈ Rm×n with m′ ≤
O(ε−2n log(n/δ)) rows, s.t. Ã is an ε approximation of A (whp).

Notice

τi(A
>) = max

x∈Rn
(aaa>i x)

2

‖A>x‖22
= aaa>i (AA>)−1aaai

So, we can compute leverage scores if we can compute inverses. But that’s expensive! To compute
the leverage scores naively would require us to

1. Compute AA>. Time O(nω−2m2).

2. Compute (AA>)−1. Time Õ(nω).

3. Compute C = (AA>)−1A. Time O(nω−1m).

4. Compute aaa>i ci for all i. Time O(nm).

Overall, we get O(nω−2m2) time to compute all the leverage scores, and given the leverage scores,
we can compute Ã = DA in time O(nnz(A)) ≤ O(mn), which is a lower order term.

2

1.2.1 Uniform Sampling for Leverage Score Estimation

Still, our goal is to compute an approximation Ã of A with fewer rows. It turns out that in the
above “algorithm sketch”, we can replace the use of AA> in Step 1 and onwards with a very crude
approximation of the matrix and still get approximate leverage scores that are good enough for
sampling.

The following definition is helpful:

Definition 1.5 (Generalized Leverage Scores). The generalized leverage score of row i of AA>

w.r.t. B> is

τB
>

i (A>) = max
x∈Rn

(aaa>i x)
2

‖B>x‖22
.

The following theorem is the basis for a simple and clever algorithm for leverage score estimation.
It is due to Cohen et al. [CLM+15].

Theorem 1.6 (Uniform Sampling for Leverage Score Approximation). Let T ⊆ [m] denote a
uniform random sample of d rows of A>. Define the matrix T ∈ Rm×m to be the diagonal indicator
for T , i.e. T(i, i) = 1 if i ∈ T and all other entries are zero.

τ̃i
def
=

τ
TA>
i (A) if i ∈ T,

1
1+ 1

τTA>
i

(A)

otherwise.

Then, τ̃i ≥ τi(A) for all i and

E

[
n∑

i=1

τ̃i

]
≤ nm

d
.

Algorithm 1 Repeated Halving Version 1
input: m× n matrix A, approximation parameter ε
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure Repeated Halving
2: Uniformly sample m

2 rows of A to form A′

3: If A′ has > O(n log n) rows, recursively compute a 1/2-spectral approximation Ã′ of A′

4: Compute generalized leverage scores of A w.r.t. Ã′

5: Use these estimates to sample rows of A to form Ã
6: return Ã
7: end procedure

Remark 1.7. Not addressing how approximation plays into not using A′ but it’s approximation
when computing τTA>

i . but it looks like using c factor overestimates will at most increase the sum
by a factor c, because the 1/(1 + 1/x) transformation is monotone, and grows slower than x, so the
effect over approximation is in fact decreased a bit.

Let’s sketch the time required to do this:

1. Compute Ã′ by recursion. Time O(top level time), b/c log n levels but geometric decay in
time at each level.

3

2. Compute Ã′Ã′>. Time Õ(nω).

3. Compute (Ã′Ã′>)−1. Time Õ(nω).

4. Compute C = (Ã′Ã′>)−1A. Time O(nω−1m).

5. Compute aaa>i ci for all i. Time O(nm).

Overall, we get O(nω−1m) time to compute all the leverage scores, and given the leverage scores,
we can compute Ã = DA in time O(nnz(A)) ≤ O(mn), which is a lower order term.

1.3 JL Speed-up

But, we can go even faster using, the Johnson-Lindenstrauss transform [JL84] and a clever trick
from [SS11].

Theorem 1.8 (Johnson-Lindenstrauss Lemma). Suppose G> ∈ Rr×d is random matrix whose
entries are N(0, 1) iid, and r ≥ 8ε−2 log 1/δJL. Then for any fixed vector b ∈ Rd with probability at
least 1− δJL,

(1− ε)‖b‖22 ≤
m

d

∥∥∥G>b∥∥∥2
2
≤ (1 + ε)‖b‖22

It turns out we can use the JL transform to speed up computation of leverage scores:
Spielman and Srivastava realized that the JL transform can be used to speed up computation

of leverage scores:

aaa>i (Ã
′Ã′>)−1aaai = aaa>i (Ã

′Ã′>)−1Ã′Ã′>(Ã′Ã′>)−1aaai

=
∥∥∥Ã′>(Ã′Ã′>)−1aaai

∥∥∥2
2

≈ m

n

∥∥∥G>Ã′>(Ã′Ã′>)−1aaai

∥∥∥2
2

Now, we choose δJL = δ/m, and ε = 1/2 for generating G with r = O(log(m/δ)) s.t. with
probability δ, we get estimates of the leverage scores up to constant factors.

Let’s plug this into our previous algorithm:

Algorithm 2 Repeated Halving Version 2
input: m× n matrix A, approximation parameter ε
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure Repeated Halving
2: Uniformly sample m

2 rows of A to form A′

3: If A′ has > O(n log n) rows, recursively compute a 1/2-spectral approximation Ã′ of A′

4: Compute approximate (JL-based) generalized leverage scores of A w.r.t. Ã′

5: Use these estimates to sample rows of A to form Ã
6: return Ã
7: end procedure

What’s different? Let’s again sketch the time required to do this:

4

1. Compute Ã′ by recursion. Time O(top level time), b/c log n levels but geometric decay in
time at each level.

2. Compute Ã′Ã′>. Time Õ(nω).

3. Compute (Ã′Ã′>)−1. Time Õ(nω).

4. ComputeC = G>Ã′>(Ã′Ã′>)−1. Time O(r nnz(Ã′)) ≤ O(r nnz(A)) for theG>Ã′> product,
plus O(rn2) time to mutiply the result by (Ã′Ã′>)−1. The entire result is an r × n matrix.

5. Compute Caaai for all i. Time O(r nnz(A)).

The dominating terms are Õ(nnz(A) + nω).

1.4 BSS-sparsification

The following theorem, due to Batson, Spielman, and Srivastava [BSST13] show that in fact O(n/ε2)
rows is enough to produce an ε-sparsifier.

Theorem 1.9 (BSS Sparsifiers). Given A and γ ∈ (0, 1), the algorithm BSSsparsify selects a set
of n/γ2 rescaled rows of A> to form Ã> which is a 2γ + γ2-approximation of A>. The algorithm
is deterministic and can be implemented to run in O(γ−2n3m) time.

Algorithm 3 BSS sparsification
input: m× n matrix A, approximation parameter γ
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure BSSsparsify
2: Compute H = (AA>)−1/2

3: For each i ∈ [m], let v i = Haaai.
4: For convienience, let d = 1/γ2

5: Let εU =
√
d−1

d+
√
d
, εL = 1√

d
, δU =

√
d+1√
d−1 , and δL = 1

6: Let u0 ← n/εU, l0 ← −n/εL, V0 = 0, and S ← ∅.
7: for t = 1 to dn do
8: ut ← ut−1 + δU, lt ← lt−1 + δL
9: Mt ← (ut−1I−Vt−1)

−1, Mt,+ ← (utI−Vt−1)
−1,

10: Nt ← (Vt−1 − lt−1I)−1, Nt,+ ← (Vt−1 − ltI)−1

11: Find i s.t. wi ←
v>
i M2

t,+v i
Tr(Mt)−Tr(Mt,+) + v>i Mt,+v i ≤

v>
i N2

t,+v i
Tr(Nt,+)−Tr(Nt)

− v>i Nt,+v i

12: Let Vt ← Vt +
1
wi
v iv

>
i , and S ← S ∪ {i}.

13: end for

14: return Ã←
√

1−1/
√
d

dn

w
−1/2
i aaai1

...
w
−1/2
i aaaiT

 where S = {i1, . . . , iT }.

15: end procedure

5

References

[AW02] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum
channels. IEEE Transactions on Information Theory, 48(3):569–579, 2002.

[BSST13] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
sparsification of graphs: theory and algorithms. Communications of the ACM, 56(8):87–
94, 2013.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, ITCS ’15, pages 181–190,
New York, NY, USA, 2015. ACM.

[JL84] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. In Conference in modern analysis and probability (New Haven, Conn.,
1982), volume 26 of Contemporary Mathematics, pages 189–206. American Mathematical
Society, 1984.

[Rud99] Mark Rudelson. Random vectors in the isotropic position. Journal of Functional Anal-
ysis, 164(1):60–72, 1999.

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

[Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389–434, 2012.

6

	Fast Linear Algebra Talk
	Matrix Concentration
	Algorithms for -Approximation of a matrix
	Uniform Sampling for Leverage Score Estimation

	JL Speed-up
	BSS-sparsification

