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1 Fast Linear Algebra Talk

1.1 Matrix Concentration

Consider A> ∈ Rm×n. For simplicity, assume m ≥ n and rankA> = n, and write

A> =

aaa>1
...

aaa>m

 .

Definition 1.1 (Spectral ε-approximation). We will say that B> ∈ Rm×n is an ε-approximation of
A> iff for all x in Rn

(1− ε)
∥∥∥A>x∥∥∥2

2
≤
∥∥∥B>x∥∥∥2

2
≤ (1 + ε)

∥∥∥A>x∥∥∥2
2
.

Definition 1.2 (Leverage Score). The leverage score of the ith row of A> is

τi(A
>) = max

x∈Rn
(aaa>i x )

2

‖A>x‖22
.

Theorem 1.3 (Leverage Score Sum).
∑

i∈[m] τi(A
>) = rank(A>).

Below is a useful version of a Matrix Chernoff concentration result, this one due to Tropp [Tro12].
Important earlier versions were developed by Rudelson [Rud99] and Ahlswede and Winter [AW02].

Theorem 1.4 (Matrix Chernoff). Form S ⊂ [m] by including each i independently with probability
pi ≥ min(2ε−2τi(A) log(n/δ), 1). Define the diagonal matrix D ∈ Rm×m

D(i, i) =

{
1√
pi

if i ∈ S
0 o.w.

Then with probability at least 1 − δ, DA> is an ε-approximation of A>. Note that the expected
number of rows in DA> is at most 2ε−2n log(n/δ).

1.2 Algorithms for ε-Approximation of a matrix

Suppose we are given a matrix A> with m � n and we’d like to find Ã> ∈ Rm×n with m′ ≤
O(ε−2n log(n/δ)) rows, s.t. Ã is an ε approximation of A (whp).

Notice

τi(A
>) = max

x∈Rn
(aaa>i x )

2

‖A>x‖22
= aaa>i (AA>)−1aaai

So, we can compute leverage scores if we can compute inverses. But that’s expensive! To compute
the leverage scores naively would require us to

1. Compute AA>. Time O(nω−2m2).

2. Compute (AA>)−1. Time Õ(nω).

3. Compute C = (AA>)−1A. Time O(nω−1m).

4. Compute aaa>i ci for all i. Time O(nm).

Overall, we get O(nω−2m2) time to compute all the leverage scores, and given the leverage scores,
we can compute Ã = DA in time O(nnz(A)) ≤ O(mn), which is a lower order term.
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1.2.1 Uniform Sampling for Leverage Score Estimation

Still, our goal is to compute an approximation Ã of A with fewer rows. It turns out that in the
above “algorithm sketch”, we can replace the use of AA> in Step 1 and onwards with a very crude
approximation of the matrix and still get approximate leverage scores that are good enough for
sampling.

The following definition is helpful:

Definition 1.5 (Generalized Leverage Scores). The generalized leverage score of row i of AA>

w.r.t. B> is

τB
>

i (A>) = max
x∈Rn

(aaa>i x )
2

‖B>x‖22
.

The following theorem is the basis for a simple and clever algorithm for leverage score estimation.
It is due to Cohen et al. [CLM+15].

Theorem 1.6 (Uniform Sampling for Leverage Score Approximation). Let T ⊆ [m] denote a
uniform random sample of d rows of A>. Define the matrix T ∈ Rm×m to be the diagonal indicator
for T , i.e. T(i, i) = 1 if i ∈ T and all other entries are zero.

τ̃i
def
=

τ
TA>
i (A) if i ∈ T,

1
1+ 1

τTA>
i

(A)

otherwise.

Then, τ̃i ≥ τi(A) for all i and

E

[
n∑

i=1

τ̃i

]
≤ nm

d
.

Algorithm 1 Repeated Halving Version 1
input: m× n matrix A, approximation parameter ε
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure Repeated Halving
2: Uniformly sample m

2 rows of A to form A′

3: If A′ has > O(n log n) rows, recursively compute a 1/2-spectral approximation Ã′ of A′

4: Compute generalized leverage scores of A w.r.t. Ã′

5: Use these estimates to sample rows of A to form Ã
6: return Ã
7: end procedure

Remark 1.7. Not addressing how approximation plays into not using A′ but it’s approximation
when computing τTA>

i . but it looks like using c factor overestimates will at most increase the sum
by a factor c, because the 1/(1 + 1/x) transformation is monotone, and grows slower than x, so the
effect over approximation is in fact decreased a bit.

Let’s sketch the time required to do this:

1. Compute Ã′ by recursion. Time O(top level time), b/c log n levels but geometric decay in
time at each level.
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2. Compute Ã′Ã′>. Time Õ(nω).

3. Compute (Ã′Ã′>)−1. Time Õ(nω).

4. Compute C = (Ã′Ã′>)−1A. Time O(nω−1m).

5. Compute aaa>i ci for all i. Time O(nm).

Overall, we get O(nω−1m) time to compute all the leverage scores, and given the leverage scores,
we can compute Ã = DA in time O(nnz(A)) ≤ O(mn), which is a lower order term.

1.3 JL Speed-up

But, we can go even faster using, the Johnson-Lindenstrauss transform [JL84] and a clever trick
from [SS11].

Theorem 1.8 (Johnson-Lindenstrauss Lemma). Suppose G> ∈ Rr×d is random matrix whose
entries are N(0, 1) iid, and r ≥ 8ε−2 log 1/δJL. Then for any fixed vector b ∈ Rd with probability at
least 1− δJL,

(1− ε)‖b‖22 ≤
m

d

∥∥∥G>b∥∥∥2
2
≤ (1 + ε)‖b‖22

It turns out we can use the JL transform to speed up computation of leverage scores:
Spielman and Srivastava realized that the JL transform can be used to speed up computation

of leverage scores:

aaa>i (Ã
′Ã′>)−1aaai = aaa>i (Ã

′Ã′>)−1Ã′Ã′>(Ã′Ã′>)−1aaai

=
∥∥∥Ã′>(Ã′Ã′>)−1aaai

∥∥∥2
2

≈ m

n

∥∥∥G>Ã′>(Ã′Ã′>)−1aaai

∥∥∥2
2

Now, we choose δJL = δ/m, and ε = 1/2 for generating G with r = O(log(m/δ)) s.t. with
probability δ, we get estimates of the leverage scores up to constant factors.

Let’s plug this into our previous algorithm:

Algorithm 2 Repeated Halving Version 2
input: m× n matrix A, approximation parameter ε
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure Repeated Halving
2: Uniformly sample m

2 rows of A to form A′

3: If A′ has > O(n log n) rows, recursively compute a 1/2-spectral approximation Ã′ of A′

4: Compute approximate (JL-based) generalized leverage scores of A w.r.t. Ã′

5: Use these estimates to sample rows of A to form Ã
6: return Ã
7: end procedure

What’s different? Let’s again sketch the time required to do this:

4



1. Compute Ã′ by recursion. Time O(top level time), b/c log n levels but geometric decay in
time at each level.

2. Compute Ã′Ã′>. Time Õ(nω).

3. Compute (Ã′Ã′>)−1. Time Õ(nω).

4. ComputeC = G>Ã′>(Ã′Ã′>)−1. Time O(r nnz(Ã′)) ≤ O(r nnz(A)) for theG>Ã′> product,
plus O(rn2) time to mutiply the result by (Ã′Ã′>)−1. The entire result is an r × n matrix.

5. Compute Caaai for all i. Time O(r nnz(A)).

The dominating terms are Õ(nnz(A) + nω).

1.4 BSS-sparsification

The following theorem, due to Batson, Spielman, and Srivastava [BSST13] show that in fact O(n/ε2)
rows is enough to produce an ε-sparsifier.

Theorem 1.9 (BSS Sparsifiers). Given A and γ ∈ (0, 1), the algorithm BSSsparsify selects a set
of n/γ2 rescaled rows of A> to form Ã> which is a 2γ + γ2-approximation of A>. The algorithm
is deterministic and can be implemented to run in O(γ−2n3m) time.

Algorithm 3 BSS sparsification
input: m× n matrix A, approximation parameter γ
output: spectral approximation Ã consisting of O(ε−2n log n) rescaled rows of A
1: procedure BSSsparsify
2: Compute H = (AA>)−1/2

3: For each i ∈ [m], let v i = Haaai.
4: For convienience, let d = 1/γ2

5: Let εU =
√
d−1

d+
√
d
, εL = 1√

d
, δU =

√
d+1√
d−1 , and δL = 1

6: Let u0 ← n/εU, l0 ← −n/εL, V0 = 0, and S ← ∅.
7: for t = 1 to dn do
8: ut ← ut−1 + δU, lt ← lt−1 + δL
9: Mt ← (ut−1I−Vt−1)

−1, Mt,+ ← (utI−Vt−1)
−1,

10: Nt ← (Vt−1 − lt−1I)−1, Nt,+ ← (Vt−1 − ltI)−1

11: Find i s.t. wi ←
v>
i M2

t,+v i
Tr(Mt)−Tr(Mt,+) + v>i Mt,+v i ≤

v>
i N2

t,+v i
Tr(Nt,+)−Tr(Nt)

− v>i Nt,+v i

12: Let Vt ← Vt +
1
wi
v iv

>
i , and S ← S ∪ {i}.

13: end for

14: return Ã←
√

1−1/
√
d

dn

w
−1/2
i aaai1

...
w
−1/2
i aaaiT

 where S = {i1, . . . , iT }.

15: end procedure
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