A Tutorial on Matrix Approximation by Row Sampling

Rasmus Kyng

June 11, 2018

Contents

1	Fast	t Linear Algebra Talk	2
	1.1	Matrix Concentration	2
	1.2	Algorithms for ϵ -Approximation of a matrix $\ldots \ldots \ldots$	2
		1.2.1 Uniform Sampling for Leverage Score Estimation	3
	1.3	JL Speed-up	4
	1.4	BSS-sparsification	5

1 Fast Linear Algebra Talk

1.1 Matrix Concentration

Consider $\mathbf{A}^{\top} \in \mathbb{R}^{m \times n}$. For simplicity, assume $m \ge n$ and rank $\mathbf{A}^{\top} = n$, and write

$$\mathbf{A}^ op = egin{pmatrix} oldsymbol{a}_1^pert \ ec{\mathbf{a}}_m^pert \ oldsymbol{a}_m^pert \end{pmatrix}.$$

Definition 1.1 (Spectral ϵ -approximation). We will say that $\mathbf{B}^{\top} \in \mathbb{R}^{m \times n}$ is an ϵ -approximation of \mathbf{A}^{\top} iff for all \mathbf{x} in \mathbb{R}^{n}

$$(1-\epsilon) \left\| \mathbf{A}^{\top} \boldsymbol{x} \right\|_{2}^{2} \leq \left\| B^{\top} \boldsymbol{x} \right\|_{2}^{2} \leq (1+\epsilon) \left\| \mathbf{A}^{\top} \boldsymbol{x} \right\|_{2}^{2}.$$

Definition 1.2 (Leverage Score). The leverage score of the *i*th row of \mathbf{A}^{\top} is

$$au_i(\mathbf{A}^{ op}) = \max_{\boldsymbol{x} \in \mathbb{R}^n} rac{(\boldsymbol{a}_i^{ op} \boldsymbol{x})^2}{\|\mathbf{A}^{ op} \boldsymbol{x}\|_2^2}.$$

Theorem 1.3 (Leverage Score Sum). $\sum_{i \in [m]} \tau_i(\mathbf{A}^{\top}) = \operatorname{rank}(\mathbf{A}^{\top}).$

Below is a useful version of a Matrix Chernoff concentration result, this one due to Tropp [Tro12]. Important earlier versions were developed by Rudelson [Rud99] and Ahlswede and Winter [AW02].

Theorem 1.4 (Matrix Chernoff). Form $S \subset [m]$ by including each *i* independently with probability $p_i \geq \min(2\epsilon^{-2}\tau_i(\mathbf{A})\log(n/\delta), 1)$. Define the diagonal matrix $\mathbf{D} \in \mathbb{R}^{m \times m}$

$$\mathbf{D}(i,i) = \begin{cases} \frac{1}{\sqrt{p_i}} & \text{if } i \in S\\ 0 & o.w. \end{cases}$$

Then with probability at least $1 - \delta$, \mathbf{DA}^{\top} is an ϵ -approximation of \mathbf{A}^{\top} . Note that the expected number of rows in \mathbf{DA}^{\top} is at most $2\epsilon^{-2}n\log(n/\delta)$.

1.2 Algorithms for ϵ -Approximation of a matrix

Suppose we are given a matrix \mathbf{A}^{\top} with $m \gg n$ and we'd like to find $\tilde{\mathbf{A}^{\top}} \in \mathbb{R}^{m \times n}$ with $m' \leq O(\epsilon^{-2}n \log(n/\delta))$ rows, s.t. $\tilde{\mathbf{A}}$ is an ϵ approximation of \mathbf{A} (whp).

Notice

$$au_i(\mathbf{A}^{ op}) = \max_{oldsymbol{x} \in \mathbb{R}^n} rac{(oldsymbol{a}_i^{ op}oldsymbol{x})^2}{\|\mathbf{A}^{ op}oldsymbol{x}\|_2^2} = oldsymbol{a}_i^{ op} (\mathbf{A}\mathbf{A}^{ op})^{-1}oldsymbol{a}_i$$

So, we can compute leverage scores if we can compute inverses. But that's expensive! To compute the leverage scores naively would require us to

- 1. Compute $\mathbf{A}\mathbf{A}^{\top}$. Time $O(n^{\omega-2}m^2)$.
- 2. Compute $(\mathbf{A}\mathbf{A}^{\top})^{-1}$. Time $\widetilde{O}(n^{\omega})$.
- 3. Compute $\mathbf{C} = (\mathbf{A}\mathbf{A}^{\top})^{-1}\mathbf{A}$. Time $O(n^{\omega-1}m)$.
- 4. Compute $\boldsymbol{a}_i^{\top} \boldsymbol{c}_i$ for all *i*. Time O(nm).

Overall, we get $O(n^{\omega-2}m^2)$ time to compute all the leverage scores, and given the leverage scores, we can compute $\tilde{\mathbf{A}} = \mathbf{D}\mathbf{A}$ in time $O(\operatorname{nnz}(\mathbf{A})) \leq O(mn)$, which is a lower order term.

1.2.1 Uniform Sampling for Leverage Score Estimation

Still, our goal is to compute an approximation $\tilde{\mathbf{A}}$ of \mathbf{A} with fewer rows. It turns out that in the above "algorithm sketch", we can replace the use of $\mathbf{A}\mathbf{A}^{\top}$ in Step 1 and onwards with a very crude approximation of the matrix and still get approximate leverage scores that are good enough for sampling.

The following definition is helpful:

Definition 1.5 (Generalized Leverage Scores). The generalized leverage score of row *i* of AA^{\top} w.r.t. \mathbf{B}^{\top} is

$$au_i^{\mathbf{B}^ op}(\mathbf{A}^ op) = \max_{oldsymbol{x} \in \mathbb{R}^n} rac{(oldsymbol{a}_i^ op oldsymbol{x})^2}{\|\mathbf{B}^ opoldsymbol{x}\|_2^2}$$

The following theorem is the basis for a simple and clever algorithm for leverage score estimation. It is due to Cohen et al. [CLM⁺15].

Theorem 1.6 (Uniform Sampling for Leverage Score Approximation). Let $T \subseteq [m]$ denote a uniform random sample of d rows of \mathbf{A}^{\top} . Define the matrix $\mathbf{T} \in \mathbb{R}^{m \times m}$ to be the diagonal indicator for T, i.e. $\mathbf{T}(i, i) = 1$ if $i \in T$ and all other entries are zero.

$$\tilde{\tau}_{i} \stackrel{\text{def}}{=} \begin{cases} \tau_{i}^{\mathbf{T}\mathbf{A}^{\top}}(\mathbf{A}) & \text{if } i \in T, \\ \frac{1}{1 + \frac{1}{\tau_{i}^{\mathbf{T}\mathbf{A}^{\top}}(\mathbf{A})}} & \text{otherwise.} \end{cases}$$

Then, $\tilde{\tau}_i \geq \tau_i(\mathbf{A})$ for all *i* and

$$\mathbb{E}\left[\sum_{i=1}^{n} \tilde{\tau}_i\right] \le \frac{nm}{d}.$$

Algorithm 1 REPEATED HALVING VERSION 1

input: $m \times n$ matrix **A**, approximation parameter ϵ

output: spectral approximation $\tilde{\mathbf{A}}$ consisting of $O(\epsilon^{-2}n\log n)$ rescaled rows of \mathbf{A}

- 1: procedure REPEATED HALVING
- 2: Uniformly sample $\frac{m}{2}$ rows of **A** to form **A**'
- 3: If \mathbf{A}' has $> O(n \log n)$ rows, recursively compute a 1/2-spectral approximation $\tilde{\mathbf{A}}'$ of \mathbf{A}'
- 4: Compute generalized leverage scores of \mathbf{A} w.r.t. $\tilde{\mathbf{A}}'$
- 5: Use these estimates to sample rows of **A** to form **A**
- 6: return A
- 7: end procedure

Remark 1.7. Not addressing how approximation plays into not using \mathbf{A}' but it's approximation when computing $\tau_i^{\mathbf{T}\mathbf{A}^{\top}}$. but it looks like using c factor overestimates will at most increase the sum by a factor c, because the 1/(1+1/x) transformation is monotone, and grows slower than x, so the effect over approximation is in fact decreased a bit.

Let's sketch the time required to do this:

1. Compute \mathbf{A}' by recursion. Time O(top level time), $b/c \log n$ levels but geometric decay in time at each level.

- 2. Compute $\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top}$. Time $\tilde{O}(n^{\omega})$.
- 3. Compute $(\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1}$. Time $\widetilde{O}(n^{\omega})$.
- 4. Compute $\mathbf{C} = (\tilde{\mathbf{A}}' \tilde{\mathbf{A}}'^{\top})^{-1} \mathbf{A}$. Time $O(n^{\omega 1}m)$.
- 5. Compute $\boldsymbol{a}_i^{\top} \boldsymbol{c}_i$ for all *i*. Time O(nm).

Overall, we get $O(n^{\omega-1}m)$ time to compute all the leverage scores, and given the leverage scores, we can compute $\tilde{\mathbf{A}} = \mathbf{D}\mathbf{A}$ in time $O(\operatorname{nnz}(\mathbf{A})) \leq O(mn)$, which is a lower order term.

1.3 JL Speed-up

But, we can go even faster using, the Johnson-Lindenstrauss transform [JL84] and a clever trick from [SS11].

Theorem 1.8 (Johnson-Lindenstrauss Lemma). Suppose $\mathbf{G}^{\top} \in \mathbb{R}^{r \times d}$ is random matrix whose entries are N(0,1) iid, and $r \geq 8\epsilon^{-2} \log 1/\delta_{JL}$. Then for any fixed vector $\mathbf{b} \in \mathbb{R}^d$ with probability at least $1 - \delta_{JL}$,

$$(1-\epsilon) \|\boldsymbol{b}\|_2^2 \le \frac{m}{d} \|\mathbf{G}^\top \boldsymbol{b}\|_2^2 \le (1+\epsilon) \|\boldsymbol{b}\|_2^2$$

It turns out we can use the JL transform to speed up computation of leverage scores:

Spielman and Srivastava realized that the JL transform can be used to speed up computation of leverage scores:

$$\begin{split} \boldsymbol{a}_{i}^{\top} (\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1} \boldsymbol{a}_{i} &= \boldsymbol{a}_{i}^{\top} (\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1} \tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top} (\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1} \boldsymbol{a}_{i} \\ &= \left\| \tilde{\mathbf{A}}'^{\top} (\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1} \boldsymbol{a}_{i} \right\|_{2}^{2} \\ &\approx \frac{m}{n} \left\| \mathbf{G}^{\top} \tilde{\mathbf{A}}'^{\top} (\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1} \boldsymbol{a}_{i} \right\|_{2}^{2} \end{split}$$

Now, we choose $\delta_{JL} = \delta/m$, and $\epsilon = 1/2$ for generating **G** with $r = O(\log(m/\delta))$ s.t. with probability δ , we get estimates of the leverage scores up to constant factors.

Let's plug this into our previous algorithm:

Algorithm 2 Repeated Halving Version 2

input: $m \times n$ matrix **A**, approximation parameter ϵ

output: spectral approximation $\tilde{\mathbf{A}}$ consisting of $O(\epsilon^{-2}n\log n)$ rescaled rows of \mathbf{A}

1: procedure Repeated Halving

- 2: Uniformly sample $\frac{m}{2}$ rows of **A** to form **A**'
- 3: If \mathbf{A}' has $> O(n \log n)$ rows, recursively compute a 1/2-spectral approximation $\tilde{\mathbf{A}}'$ of \mathbf{A}'
- 4: Compute approximate (JL-based) generalized leverage scores of \mathbf{A} w.r.t. \mathbf{A}'
- 5: Use these estimates to sample rows of **A** to form **A**
- 6: return A
- 7: end procedure

What's different? Let's again sketch the time required to do this:

- 1. Compute $\tilde{\mathbf{A}}'$ by recursion. Time O(top level time), $b/c \log n$ levels but geometric decay in time at each level.
- 2. Compute $\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top}$. Time $\tilde{O}(n^{\omega})$.
- 3. Compute $(\tilde{\mathbf{A}}'\tilde{\mathbf{A}}'^{\top})^{-1}$. Time $\widetilde{O}(n^{\omega})$.
- 4. Compute $\mathbf{C} = \mathbf{G}^{\top} \tilde{\mathbf{A}}^{\prime \top} (\tilde{\mathbf{A}}^{\prime} \tilde{\mathbf{A}}^{\prime \top})^{-1}$. Time $O(r \operatorname{nnz}(\tilde{\mathbf{A}}^{\prime})) \leq O(r \operatorname{nnz}(\mathbf{A}))$ for the $\mathbf{G}^{\top} \tilde{\mathbf{A}}^{\prime \top}$ product, plus $O(rn^2)$ time to mutiply the result by $(\tilde{\mathbf{A}}^{\prime} \tilde{\mathbf{A}}^{\prime \top})^{-1}$. The entire result is an $r \times n$ matrix.
- 5. Compute $\mathbf{C}\boldsymbol{a}_i$ for all *i*. Time $O(r \operatorname{nnz}(\mathbf{A}))$.

The dominating terms are $\widetilde{O}(\operatorname{nnz}(A) + n^{\omega})$.

1.4 BSS-sparsification

The following theorem, due to Batson, Spielman, and Srivastava [BSST13] show that in fact $O(n/\epsilon^2)$ rows is enough to produce an ϵ -sparsifier.

Theorem 1.9 (BSS Sparsifiers). Given \mathbf{A} and $\gamma \in (0, 1)$, the algorithm BSSSPARSIFY selects a set of n/γ^2 rescaled rows of \mathbf{A}^{\top} to form $\tilde{\mathbf{A}}^{\top}$ which is a $2\gamma + \gamma^2$ -approximation of \mathbf{A}^{\top} . The algorithm is deterministic and can be implemented to run in $O(\gamma^{-2}n^3m)$ time.

 $Algorithm \ 3 \ {\rm BSS} \ {\rm sparsification} \\$

input: $m \times n$ matrix **A**, approximation parameter γ

output: spectral approximation $\tilde{\mathbf{A}}$ consisting of $O(\epsilon^{-2}n\log n)$ rescaled rows of \mathbf{A}

1: **procedure** BSSsparsify

Compute $\mathbf{H} = (\mathbf{A}\mathbf{A}^{\top})^{-1/2}$ 2: For each $i \in [m]$, let $\boldsymbol{v}_i = \mathbf{H}\boldsymbol{a}_i$. 3: For convienience, let $d = 1/\gamma^2$ 4: Let $\epsilon_{\mathrm{U}} = \frac{\sqrt{d}-1}{d+\sqrt{d}}$, $\epsilon_{\mathrm{L}} = \frac{1}{\sqrt{d}}$, $\delta_{\mathrm{U}} = \frac{\sqrt{d}+1}{\sqrt{d}-1}$, and $\delta_{\mathrm{L}} = 1$ Let $u_0 \leftarrow n/\epsilon_{\mathrm{U}}$, $l_0 \leftarrow -n/\epsilon_{\mathrm{L}}$, $\mathbf{V}_0 = \mathbf{0}$, and $S \leftarrow \emptyset$. 5: 6: for t = 1 to dn do 7: $u_t \leftarrow u_{t-1} + \delta_{\mathrm{U}}, \ l_t \leftarrow l_{t-1} + \delta_{\mathrm{L}}$ 8:
$$\begin{split} \mathbf{w}_{t} &\leftarrow (u_{t-1}\mathbf{I} - \mathbf{V}_{t-1})^{-1}, \ \mathbf{M}_{t,+} \leftarrow (u_{t}\mathbf{I} - \mathbf{V}_{t-1})^{-1}, \\ \mathbf{M}_{t} \leftarrow (u_{t-1}\mathbf{I} - \mathbf{V}_{t-1})^{-1}, \ \mathbf{M}_{t,+} \leftarrow (u_{t}\mathbf{I} - \mathbf{V}_{t-1})^{-1}, \\ \mathbf{N}_{t} \leftarrow (\mathbf{V}_{t-1} - l_{t-1}\mathbf{I})^{-1}, \ \mathbf{N}_{t,+} \leftarrow (\mathbf{V}_{t-1} - l_{t}\mathbf{I})^{-1} \\ \text{Find } i \text{ s.t. } w_{i} \leftarrow \frac{\boldsymbol{v}_{i}^{\top}\mathbf{M}_{t,+}^{2}\boldsymbol{v}_{i}}{\operatorname{Tr}(\mathbf{M}_{t}) - \operatorname{Tr}(\mathbf{M}_{t,+})} + \boldsymbol{v}_{i}^{\top}\mathbf{M}_{t,+}\boldsymbol{v}_{i} \leq \frac{\boldsymbol{v}_{i}^{\top}\mathbf{N}_{t,+}^{2}\boldsymbol{v}_{i}}{\operatorname{Tr}(\mathbf{N}_{t,+}) - \operatorname{Tr}(\mathbf{N}_{t})} - \boldsymbol{v}_{i}^{\top}\mathbf{N}_{t,+}\boldsymbol{v}_{i} \\ \text{Let } \mathbf{V}_{t} \leftarrow \mathbf{V}_{t} + \frac{1}{w_{i}}\boldsymbol{v}_{i}\boldsymbol{v}_{i}^{\top}, \text{ and } S \leftarrow S \cup \{i\}. \end{split}$$
9: 10: 11: 12:end for 13:return $\tilde{\mathbf{A}} \leftarrow \sqrt{\frac{1-1/\sqrt{d}}{dn}} \begin{pmatrix} w_i^{-1/2} \boldsymbol{a}_{i_1} \\ \vdots \\ w^{-1/2} \boldsymbol{a}_i \end{pmatrix}$ where $S = \{i_1, \dots, i_T\}$. 14:15: end procedure

References

- [AW02] Rudolf Ahlswede and Andreas Winter. Strong converse for identification via quantum channels. *IEEE Transactions on Information Theory*, 48(3):569–579, 2002.
- [BSST13] Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification of graphs: theory and algorithms. *Communications of the ACM*, 56(8):87–94, 2013.
- [CLM⁺15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In *Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science*, ITCS '15, pages 181–190, New York, NY, USA, 2015. ACM.
- [JL84] William Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemporary Mathematics, pages 189–206. American Mathematical Society, 1984.
- [Rud99] Mark Rudelson. Random vectors in the isotropic position. Journal of Functional Analysis, 164(1):60–72, 1999.
- [SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011.
- [Tro12] Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12(4):389–434, 2012.